GILBERT PAJELA

Hunter College, City University of New York 695 Park Avenue, HN 1000G New York, NY 10065

Email: gpajela AT gradcenter DOT cuny DOT edu

Education

2019	THE GRADUATE CENTER, CITY UNIVERSITY OF NEW YORK Doctor of Philosophy in Computer Science, Expected May 2019
2013	NEW YORK INSTITUTE OF TECHNOLOGY Master of Science in Computer Science, May 2013
1996	UNIVERSITY OF PENNSYLVANIA Bachelor of Science in Electrical Engineering, December 1996

Research Interests

Formal Methods, Software Verification, Model Checking, Static Analysis, Program Analysis, Software Security, Data Mining, Big Data, Machine Learning, Cryptography, Artificial Intelligence

Publication(s)

Shankar, S., & Pajela, G. (2016, April). A Tool Integrating Model Checking into a C Verification Toolset. In *International Symposium on Model Checking Software* (pp. 214-224). Springer International Publishing.

Work Experience

2018– Computer Architecture I, Hunter College, New York, NY

• Teaching two sections of a course designed to introduce students to the following concepts in computer architecture: binary number representations, Boolean algebras and logic gates, simplification of Boolean functions, NAND, NOR, and other implementations, combinational logic, and flip-flops.

Summer 2017 Introduction to Computer Programming: Fundamentals of C, Columbia University School of Professional Studies, New York, NY

• Taught an intensive course designed to develop logic and programming skills through immersion in the fundamentals of C. Students learned the structure and features of a fundamental programming language as they implemented solutions in C.

2016–2017 Supervised Programming Lab, Hunter College, New York, NY

• Taught two sections of a programming lab designed to teach students how to apply principles of design and analysis in creating substantial programs and to give students deep practical knowledge of C++ and the Linux operating system.

2015– Research Assistant, Hunter College, New York, NY

• Assisted with development of a plugin written in OCaml for Frama-C, an extensible and collaborative platform dedicated to source-code analysis of C software.

- Assisted with developing ways of integrating static analysis with model checking.
- Produced regular reports on research progress.

Honors

- 2016–2017 Attended SSFT (Summer School on Formal Techniques): *A week-long program targeting graduate students and young researchers interested in developing and using formal techniques in their research.*
- 2013 –2014 Member, Upsilon Pi Epsilon (UPE): International honor society for students in the Computer and Information Sciences

Projects and Relevant Coursework

- Fall 2016 Abstract Interpretation-Based Approaches to Security (Principles of Software Security Course Project)
 - Presented a description and summary on the framework of Abstract Non-Interference and how it potentially provides new solutions to open problems in software security such as code injection and code obfuscation.
- Spring 2016 Refund Attacks on Bitcoin's Payment Protocol (Advanced Cryptography Course Project)
 - Presented a description and summary of real-life, experimentally verified attacks on the BIP70 Bitcoin Payment Protocol.
- Fall 2015 Efficient Proofs (Cryptography Course Project)
 - Presented a description and summary of the application of interactive proofs of knowledge and efficient zero knowledge proofs.
- Spring 2015 A Real-Time Adaptive Trading System Using Genetic Programming (Machine Learning in Quantitative Finance Course Project)
 - Presented a description and summary of applying genetic programming techniques to a realtime trading system.

Inferring Features from Student Interactions with Educational Courseware (Big Data Course Project)

- Analyzed data sets from the PSLC (Pittsburgh Science Learning Center) in order to determine whether other machine learning techniques could perform better at predicting student performance.
- Spring 2014 Predicting Power Consumption Using Linear Genetic Programming (Artificial Intelligence Course Project)
 - Used the Weka machine learning software to compare the effectiveness of genetic programming to other techniques (i.e. linear regression) at predicting the hourly electric power consumption of a building.

Simple Web Server and Mail Client (Computer Networks Course Assignments)

• Wrote a program to handle single HTTP requests and return HTTP responses to clients in Python.